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1. Introduction

Protein complexes, consisting of stable protein-protein
interactions (PPIs), are ubiquitous and essential to the proper
conduct of all eukaryotic functional pathways, serving to
coordinate virtually every aspect of cellular biology.1 Com-
prehensive determination of the entire network of protein
interactions and highly associative protein units is useful in

elucidating the mechanistic basis for complex biological
processes and functionally characterizing interacting clusters
of proteins. The term ‘protein complex’ has traditionally been
used to describe heteromeric groups of tightly associated
proteins that interact to form a unified cellular component
such as the ribosome or proteasome. Yet, as large-scale
interaction data has become increasingly available and global
interaction networks discovered, the idea of the protein
complex has evolved. That being to the notion of intercon-
nected ‘modules’ consisting of groups of physically associ-
ated proteins functioning in a unified manner, although not
necessarily with exclusive membership.2 Consequently,
researchers have begun to note heterogeneity in terms of both
the apparent limited correlation of attributes such as gene
coexpressions and the functional incongruence of putative
members of certain protein complexes.3-5 This has introduced
a dichotomy in the interpretation of experimental datasets
as some would define the protein complex as a stable
macromolecule while others see it as a more dynamic,
nonexclusive set of interacting proteins. Indeed, recent
experimental evidence derived from genome-scale studies
using yeast as a model system has begun to blur the heuristic
boundaries that have historically been applied to define
protein complexes as discrete biological articles.

While the emergence of high-throughput interaction
screening methods over the past 5 years now allows for more
accurate and comprehensive elucidation of physical group-
ings of proteins in a systematic genome-wide manner, the
rapidly increasing number of identified associations between
gene products has ironically made it more difficult to clearly
segregate proteins into discrete functional entities.6

As a result of this changing landscape, a most pressing
challenge of the post-genomic era has become how to
effectively integrate and accurately interpret the resulting
global networks of physical associations so as to define
functionally relevant modules that reflect ever-changing
developmental cues, physiological signals, or disease-related
maladaptive processes. Large-scale assessment of protein
modules involves not only experimental analysis of protein
associations but also computational evaluation of the reli-
ability of the raw PPI data and thereafter algorithmic
assignment of proteins into modules based on association
data. As these modules are often of greatest interest to
biologists, this review provides an overview of the integration
of complementary experimental and computational methods
that are currently available for the study of protein complexes
on a genome scale. This review begins with an introduction
and a description of the strengths and weaknesses of
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commonly used high-throughput interaction assays, both
experimentally and computationally, highlighting notable
papers. As protein interaction complexes are commonly
algorithmically derived from lists of binary interaction data,
methods excelling at resolving complexes and determining
the presence or absence of single associations are discussed
in the same context with the later sections of the review
focusing on methods of computationally evaluating and
deriving complexes from appropriate interaction data. Specif-
ically, subsequent sections explain pertinent interaction

validation methods as well as clustering algorithms and
cluster-validation techniques used to evaluate derived protein
complexes. Most of the methods mentioned here have been
developed for data generation in budding yeast since it is
currently the most extensively studied model organism for
large-scale screens, although specific extensions to other
organisms including human are mentioned.

2. Generation of Experimental Data

The goal of any proteome-scale association assay is high-
quality interaction data. TheSaccharomyces cereVisiae
(budding yeast) proteome (which is relatively small in
comparison to mammalian systems) has been investigated
experimentally for over 30 years using low-throughput
means.7,8 Appropriately, the long-beheld gold standard in
protein complexes in yeast was generally regarded to be the
curated set stored in the Munich Information center for
Protein Sequences (MIPS)9 database, which contains experi-
mentally well-characterized protein complexes generated
through low-throughput assay. However, increasingly com-
prehensive lists of protein interactions were only recently
generated with the application of high-throughput assays such
as tandem affinity purification (TAP)10 and yeast-2-hybrid
(Y2H)11 screening (see Figure 1b). Indeed, two recent global
studies of yeast protein complexes published last year by
Gavin et al.12 and Krogan et al.13 each predicted the existence
of over 350 alternate groupings of proteins based on
clustering (see section 3.2) of the physical interaction data.
Yet while high-resolution interaction detection methods
(Figure 1a) may avoid some of the problems, such as the
often high false-positive and false-negative rates, associated
with their high-throughput counterparts,14,15 these low-
throughput interaction methods are not practical for pro-
teome-scale studies. For this reason, high-throughput inter-
action methods are emphasized in this section, while a brief
overview of low-throughput assays is discussed in the context
of data validation.
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2.1. Yeast-2-Hybrid
Y2H was first developed in the late 1980s11 as a generaliz-

able and highly sensitive method to screen for interactions
among binary pairs of proteins and is still frequently used
both as a first pass screening tool and for genome-scale
exploratory studies today.16-18 Despite several design varia-
tions since its inception which have resulted in improved

assay efficiency,19-22 the basic principle of the Y2H assay
remains the same. That being that Y2H takes advantage of
the fact that the process of transcriptional activation (and
thus expression of a suitable reporter gene) depends on the
tethering of two distinct protein domains to a target
promoter: first, a DNA-binding domain (BD) that binds to
the upstream DNA element and, second, an activation

Figure 1. Basic overview of low- and high-resolution interaction surveying. (A) Low-resolution surveying (left) tends to begin with interaction
data (typically in binary format), creates a cohesive interaction network map, and then assigns proteins to complexes through application
of a clustering algorithm. This method, while often not as accurate as high-resolution mapping of macrocomplexes, can generally be applied
to entire genomes. High-resolution surveying (right) is focused on determining conclusively the nature of protein associations, specifically
through determination of associating secondary structure configurations. (B) Relative representation of interaction survey methods in the
GRID database. The majority of representative interactions are the result of affinity capture-MS methods such as tandem affinity purification
(TAP). The remaining majority are the result of yeast-2-hybrid studies.
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domain (AD) that interacts with the general RNA polymerase
machinery. In order to determine if an interaction occurs
between two proteins, such asx andy (wherex represents
the bait protein andy the possible interactor or prey), protein
x is expressed as a fusion to the DNA-binding domain, while
the activation domain is likewise fused to proteiny. If the
re-engineered proteins are coexpressed and subsequently
interact in the yeast nucleus, the jointly linked BD and AD
will reconstitute an activator, leading to expression of a
selectable reporter gene.11 The presence or absence of a
binary interaction can then be monitored on a large scale by
screening thousands of strains for the activated expression
of selectable markers and following the growth properties
of viable yeast colonies. High-throughput adaptability can
be further enhanced by mating ordered arrays of yeast strains
encoding distinct bait and prey in a 96-well format.23

The first adaptation of the Y2H method to genome
interaction mapping was reported for the T7E. coli bacte-
riophage in which 25 interactions were identified among∼50
proteins.24 The implications of this pioneering study were
that the Y2H method could be applied to study interactions
among the components encoded by a complex biological
system or even an entire genome. In rapid succession the
interaction networks of even more complex organisms were
surveyed over the course of the next few years using the
Y2H method. In 2001, two separate initiatives compiled
Y2H-based global interaction maps in yeast,25,26 noting a
combined set of 4000 putative PPIs. In 2004, an initial first-
pass proteome-wide map was reported for the nematode
Caenorhabditis elegans,27 the first study of its kind for a
multicellular organism. Y2H screens have also been con-
ducted in even more complex systems such asDrosophila
melanogaster(fruit fly) 28,29 and most recently (although the
data can be considered still preliminary) for human cells.30,31

A major advantage of Y2H is that reformation of the
transcription factor complex used to detect interactions can
occur when assayed proteins only transiently interact,32

whereas comparable affinity-based purification methods
(discussed below) have difficulty detecting transient interac-
tions.33 A major disadvantage of Y2H, however, is related
to the often-elevated error rates. Analysis of large-scale
datasets generated through Y2H tends to reveal low experi-
mental overlap.15,26,34The most likely explanation for the lack
of correlation between these two studies is a combination
of both a high false-positive rate (estimated to be anywhere
from 50%15 to as to high as 90%26,34) and a false-negative
rate, wherein most biologically relevant interactions are
presumed to be missed. These artifacts stem in part from
the overexpression and forced colocalization of the candidate
proteins in the yeast nucleus, leading to nonphysiological
context.19 Consequently, while Y2H results are seen as a
positive indication of a genuine protein interaction, the
predictions benefit from additional supporting evidence.

Further limiting the applicability of Y2H in nonmodel
organisms is its inability to survey interactions for gene
products with incompletely defined coding sequences as an
appropriate vector must be created for each query protein
containing the associated gene and marker. This aspect limits
implementation of comprehensive screens for mammalian
systems where alternative splicing and incomplete knowledge
of exons is common. Moreover, as Y2H is based on a binary
interaction assay, it neglects interactions that involve three
or more proteins,34 which is precisely the hallmark of many,
if not most, cellular protein complexes.

Due to the fact that interacting proteins must colocalize
to the nucleus, Y2H has also traditionally not been useful
for surveying interactions among integral membrane proteins.
However, a specialized variant of Y2H, the so-called split-
ubiquitin assay,35 has been developed to tackle this missed
opportunity and has shown increasing promise in recent
years.36 Briefly, one transmembrane (TM) domain containing
protein is fused to the N-terminal half of ubiquitin, while
the second TM protein is fused to the C-terminal half of
ubiquitin and an adjoined transcription factor. Interaction of
these proteins causes recognition of the complex by ubiquitin-
recognizing proteases, thus releasing the transcription factor
from its membrane anchor and thereby allowing subsequent
activation of a reporter gene. Application of this method
resulted in identification of nearly 2000 total interactions
involving 536 TM-bearing proteins in yeast (131 of the 2000
interactions were deemed to be high quality based on a series
of stringent criteria36).

Like most other Y2H-derived methods, the split-ubiquitin
assay involves constitutively over-expressing the bait protein,
often resulting in elevated (non-native) protein concentra-
tions. Hence, the interactions captured by this approach may
not occur at physiologic protein conditions, contributing to
a high false-positive rate. Yet recent optimizations, such as
integrating the tags into the target genome to achieve near-
native expressions, may further the applicability of this assay
for investigating the physical makeup of otherwise scantly
characterized membrane-associated biochemical pathways.

Due to their ease of execution and scalability, Y2H-based
binary assays remain prevalent in large-scale PPI surveys
for many organisms despite their often high associated error
rates. As computational methods for data evaluation improve
(see section 3.1), biologists are becoming more adroit at
reducing the number of false positives, thereby increasing
the practical utility of such methods in establishing probable
protein-protein interactions. However, the true pitfall when
using Y2H data alone when trying to deduce the subunit
composition of protein complexes is the generally high false-
negative rate, which results in sparse representation of the
overall biological networks of interactions and, consequently,
poor assessment of discrete biological modules. Several of
the large-scale Y2H screens have been shown to result in a
network topology thought to be inconsistent with true
biological systems37 (for a primer on biological interaction
networks and graph theory methods commonly applied to
analyze them, see the Appendix). Therefore, for the purpose
of deriving the molecular architecture of protein complexes,
Y2H data alone is unfavorable.

2.2. Affinity Purification
In an effort to study protein complexes specifically and

circumvent the inherent false-negative and false-positive rate
of Y2H, affinity purification was developed for large-scale
interaction surveys. The underlying concept behind affinity
purification is a consequence of what had been observed in
biochemical and coimmunoprecipitation studies for decades:
38 by selectively retrieving a protein of interest from a cell
extract through use of a specific ligand or antibody, proteins
stably bound to the query protein can usually be concomi-
tantly retrieved. In affinity purification studies a universal
epitope tag39 is often systemically attached to the query
proteins of interest which allows for routine bait capture
along with any associated interactors via a single, well-
defined, and often commercially available tag-specific
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antibody. Proteins bound to the query protein are then usually
identified through mass spectrometry using either traditional
gel-based methods or gel-free tandem mass spectrometry
procedures (the former offers qualitative information regard-
ing subunit stoichiometry, while the latter provides superior
sensitivity).

Affinity purification offers three distinct advantages over
Y2H methods. First, only the query proteins require tagging,
allowing novel interactions to be discovered between the baits
and one or more poorly characterized proteins. Second, entire
protein complexes can be captured during a single purifica-
tion, as opposed to the binary interaction format employed
by Y2H. Third, while the purification procedure can be
tedious to scale up, the need to tag only one or two proteins
in order to define a given complex reduces the number of
experiments that need to be performed to achieve good
proteomic coverage, compared to the multiple pairwise
permutations (n × n experiments) required in a Y2H screen.

Using a systematic method of affinity purification coupled
with mass spectrometry, the first interaction map for yeast
was published in 2002.40 Reflecting a substantive increase
in proteome coverage, the group released an interaction map
of higher density than previous comparable-scale studies
consisting of 3617 putative protein-protein interactions for
493 tagged bait proteins. Importantly, the authors reported
approximately 3-fold more interactions per protein which
were curated in protein complex databases, suggesting a
decreased false-negative rate.40 However, while seemingly
more accurate, the results of affinity purification studies have
the unfortunate disadvantage of being biased against detec-
tion of low-abundance proteins with results dominated by
higher-abundance bait proteins and often many spurious
interactions resulting from common ‘housekeeping’ con-
taminants.

2.2.1. Tandem Affinity Purification

In an effort to increase the sensitivity of affinity purifica-
tion to low-concentration proteins, the affinity purification
process was further refined as tandem-affinity-purification.10

The principle behind the TAP procedure is to retrieve
proteins bound to epitope-tagged proteins of interest through
two successive steps of affinity chromatography: first,
generally via binding of the tagged protein to IgG beads and,
second, via attachment to calmodulin (or an alternative
affinity resin) beads.10 Following the second elution the
proteins (bait and interacting partners) are typically identified
by mass spectrometry. The TAP interaction survey method
is now recognized as having the best coverage and accuracy
of experimental high-throughput interaction detection meth-
ods15 and has the substantive advantage of detecting interac-
tions among proteins assembled into protein complexes under
near-native physiological conditions.

The first adaptation of the TAP method to large-scale
protein complex characterization was performed in yeast and
reported in 2001.41 By tagging approximately 1700 proteins
the authors were able to obtain data supporting 232 distinct
functional interaction modules and provide hints as to the
possible biological roles of 344 uncharacterized proteins
based on physical association with proteins of known
function.

In the following 4 years hundreds of studies were
published identifying specific protein interactions and com-
plexes not only in yeast but also inE. coli,42 plant,43

drosophila,44 and human45,46 (over 100 low-throughput

studies as of 200447). In 2006, two independent studies
simultaneously published definitive, virtually comprehensive
global surveys of stable soluble protein complexes for
yeast.12,13Stringent data processing procedures were applied
to the enormous raw datasets, seemingly eliminating false
positives. Yet, despite the rigor and sheer scale of the two
studies, with∼50% overlap in the total number of proteins
detected (1304 in common out of the 1993 reported in Gavin
et al.12 study and the 2388 found in Krogan et al.9), initial
cross-comparisons revealed a surprisingly modest overlap
in the respective interactions (<25%; see Figure 2). Aside
from minor differences in the respective screening proce-
dures, the most likely cause for this seeming shortfall stems
from differences in the computational algorithms used to
ascertain the most likely protein interactions and interaction
clusters,48 thus illustrating the impact of the increasingly
sophisticated analytical methods used to interpret genome-
scale interaction data (discussed in more detail in section
3). It should however be noted that although TAP is
specifically designed for complex resolution, final determi-
nation of complexes has depended on algorithmic interpreta-
tion of determined confidence scores between pairs of
interactors; thus, the potential exists to misrepresent experi-
mentally determined complexes. These issues are discussed
in more detail in subsequent computational sections. One
other caveat to TAP screening is the functional interference
potentially caused by introduction of the epitope tag or
selection marker, which may perturb protein folding/function
and mRNA stability/regulation. Despite being relatively
innocuous, initial reports suggested that a tag may impair
function inasmuch as 18% of all targeted proteins.41 It is
worth noting, however, that one-third12 to nearly one-half13

of interacting proteins were identified as untagged preys for
other tagged proteins and thus could still be surveyed.

2.3. Genome-Scale Fluorescence Tagging and
Microscopy

Much as the name implies, fluorescence tagging involves
addition of a detectible tag to a protein of interest through

Figure 2. Overlap of high-throughput interaction study results.
The larger Venn diagram shows the overlap in protein interaction
data resulting from three independent methods: tandem affinity
purification (TAP), yeast-2-hybrid, and affinity purification com-
bined with mass spectrometry. All interaction data was obtained
from the GRID database. The inset Venn diagrams show the overlap
in interactions of the two largest single studies for each respective
method (TAP and yeast-2-hybrid). In the case of yeast-2-hybrid
inset studies are those published by Ito et al. and Uetz et al. For
TAP, the two inset studies are by Gavin et al. and Krogan et al.
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either antibody binding or epitope tagging. Traditionally,
antibodies selected against a target protein (primary antibod-
ies) are reacted with dye-coupled secondary antibodies
(recognizing the primary reagents), allowing cellular local-
ization in fixed cells to subsequently be monitored through
microscopy.49 In 2002, the first large-scale localization
survey50 was performed in yeast using indirect immuno-
fluorescence of 2744 proteins tagged with a universal epitope
marker, illustrating the primary subcellular localization of
about one-half of the protein complement of yeast. By
recombining query proteins with a recognizable tag, the
tedious task of having to create antibodies specific for each
protein of interest is avoided.

Originally obtained from jellyfish, green fluorescent
protein (GFP) is likely the most commonly used fluorescent
marker for expression and localization assays. Through
ligation and transformation, genomic sequence encoding GFP
can be attached to genes of interest which then in turn
become detectible through microscopy upon expression. As
recombination technology has progressed and entire genome
sequences become known, proteome-scale GFP tagging has
become feasible. In 2003, a virtually complete GFP-tagging
survey of the yeast proteome (4156 proteins in total) was
reported,51 again avoiding use of specific antibodies alto-
gether. A unified pattern emergedsproteins existing within
the same transcriptional module (groups of transcriptionally
coregulated proteins reasoned to be functionally related52,53)
exhibited similar localization patterns. Further, it was noted
that proteins known to interact physically or functionally
were far more likely to exist in the same cellular compart-
ment,51 although colocalization alone (even as demonstrated
through high-resolution localization assays) does not provide
evidence of a direct physical interaction. However, while
the colocalization of two proteins may not strictly indicate
that they interact or coexist within a protein complex,54 it is
often implicative of a functional relationship at some level,
while conversely, the lack of colocalization is used as
evidence of noninteractors.55

2.4. New and Arising Methods of Interaction
Detection: FRET and LUMIER

Förster Resonance energy transfer (FRET)56,57 (Table 1)
represents a highly specialized means of interaction detection,

similar in principle to fluorescence tagging and recently
adapted to the study of protein complexes.58 During FRET
two proteins are tagged and coexpressed with variants of
GFP. When in immediate proximity (<80 Å) energy transfer
between the juxtaposed fluorescent molecules occurs and the
resulting emission spectra can be monitored.59 Due to the
exceptional resolution and sensitivity of FRET, the method
can be used to examine spatial relationships of interacting
pairs of proteins within a cell.60 A major advantage of the
FRET approach is in the ability to study transient PPIs within
living cells60 as even very brief interactions result in
quantifiable energy transfers. The technique has also been
adapted to examining the activation states of tyrosine
kinases61 in living mammalian cells and formation of
pheromone-responsive protein complexes58 in yeast.

A characteristic pitfall of FRET, however, is the substantial
amount of optimization that must be dedicated to reducing
photobleaching in the experimental output (for a more in-
depth expository, see Sekar and Periasamy62). Hence, for the
time being FRET remains a specialized low-throughput
assay, although it is conceivable that FRET could be adapted
to high-throughput format as both the core technology and
associated optics continue to improve.

Another new method for examining broader sets of
inducible protein-protein interactions is a highly sensitive
luminescence-based mammalian interactome mapping (LUM-
IER)63 system, which was recently introduced for a mam-
malian cell setting. In the LUMIER approach a protein of
interest is fused with a Renilla luciferase reporter enzyme,
while potential binding partners are coexpressed as fusions
to a FLAG epitope-tag.64 Immunoprecipitation is performed
in a parallel, multiwell manner using anti-FLAG antibody
specific for the preys and the luminescence associated with
each pull down then quantified via spectrophotometry. One
advantage of the LUMIER method is that it is well suited to
examination of temporal kinetics for dynamic protein
interaction networks. Accordingly, the procedure was used
to explore interactions induced among components of a
transforming growth factor beta (TGF-â) pathway following
activation of signaling in the context of an immortalized
human cell line.63 In the process of performing a total of
12 000 binary experiments the authors examined the molec-
ular dynamics of pathway activation and thereby managed
to link TGF-â to a novel kinase cascade. However, one
notable drawback of the LUMIER method is that, like Y2H
methods, non-native overexpression of the test proteins is
required. Moreover, the complexity and amount of experi-
mental data generated for even a modest-scale pilot study
examining a single pathway suggests that scaling up to
genome-scale studies will be challenging. Thus, while this
method has shown considerable promise for targeted PPI
surveys, further refinements are necessary before it is
generally applied in a more comprehensive manner.

2.5. Computational Methods for Detecting
Protein −Protein Interactions

The rapidly mounting reams of experimentally generated
interaction data now available for diverse model organisms
such as yeast,E. coil, fly, worm, and also increasingly for
human poses an ever growing challenge to bioinformaticians
both for quality control and biological inference. Appropriate
bioinformatic analyses are essential for properly interpreting
high-throughput experimental results so as to amass, process,
and distill relevant interactions. Fortunately, the substantive

Table 1. Interactions per Publication for Commonly Applied
Interaction Detection Methodsa

method ints/pub

affinity capture-MS 128.64
two hybrid 11.48
FRET 6.14
copurification 4.78
affinity capture-western 3.39
biochemical activity 2.92
affinity capture-RNA 2.62
cofractionation 2.59
colocalization 2.08
cocrystal structure 2.06
reconstituted complex 2.06
far western 1.64

a Affinity capture-MS averages more interactions per publication than
other high-throughput methods such as two hybrid. Two-hybrid assay
is still commonly applied in low-throughput format to test interaction
of specific proteins, resulting in its low interaction per publication
average. Methods appearing in the table below two-hybrid typically
require far too much experimental time to be adapted to global
experimental assay.
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breadth of innovative computational methods and tools
introduced over the past few years greatly facilitate the
efficient gathering and accurate assessment of large-scale
interaction datasets, allowing researchers to define function-
ally relevant protein clusters and extended interaction
modules. Computational biologists are likewise becoming
more adept at combining and extrapolating interaction data
to provide more profound biological insights. This section
outlines the various computational approaches that have been
applied toward generation of binary interaction data, ulti-
mately leading to the algorithmic delineation of the archi-
tecture of protein complexes.

2.5.1. Orthology Mapping

While there exists copious amounts of interaction data for
single-cell organisms (i.e., yeast), there remains relatively
sparse experimental data for mammalian species such as
mouse or human. Although the physiology is vastly different,
many aspects of cellular function (and by extension protein
complexes) are well conserved across divergent species.65

For this reason, the concept of cross-species interaction
mapping has been investigated extensively.66-69 That is, the
findings derived for simpler models, such as single cell yeast,
can be extrapolated to higher multicellular eukaryotes based
on the concept of orthology.

Conceptually, conserved binary interactions can be mapped
by determining orthologous gene pairs across species and
then transferring analogous interactions reported in one
species to another (these conserved protein interactions are
known as interologs).70 For example, if proteinsa andb have
been reported to interact in yeast while human cells express
the putative orthologs,c andd, an interaction betweenc and
d can be predicted and examined.

The traditional method of determining orthology is through
high sequence similarity (i.e., alignment of two genes in
separate genomes indicates that they are more like each other
than any member of the opposing genomes). In fact, results
indicate that interactions can be reliably transferred using
sequence identities above 80%.71 This logic is employed by
the InParanoid72 database, which has been used to infer
protein interactions between orthologous gene products for
several dozen species.73,74

One can achieve increased accuracy in the assignment of
orthology and predicted protein interactions by comparing
sequences and combining pools of interaction data obtained
from multiple species at once as theoretically the integration
process reduces noise from errors for a particular species.75

Such is the logic underlying the Clusters of Orthologous
Groups (COG) database76 that uses multiple-species phylo-
genetic mapping to determine groups of orthologous proteins.
Further applying the notion that increasing the number of
species being compared bolsters confidence in ortholog
assignment, the STRING database77 expands on COG data
by examining additional species and then further extrapolates
physical interaction data toward even newly sequenced
species.

Through orthology mapping interactions derived for
organisms with less complex and experimentally more
tractable proteomes can be transferred to a mammalian
setting. Indeed, large-scale PPI networks based on orthology
inferences have since been drawn for human cells78,79 and
even been applied to the study of human disease states.80,81

While orthologous gene products are often similar in
sequence, there is no guarantee that the respective proteins

indeed perform identical cellular functions or in fact keep
the same protein interactions. In addition, it may be difficult
or impossible to ascertain accurate orthology relationships
after gene family expansions, where one-to-many genetic
associations are more prevalent than a simplified direct one-
to-one relationship. Furthermore, other factors such as
expression and subcellular localization patterns could easily
change across species, making the physical interaction of
certain combinations of proteins impossible regardless of the
strength of a perceived association. It is perhaps for these
reasons that many such inferred interactions have been shown
to have low overall predictive accuracy.82

Recent advances in orthology mapping have begun
incorporating available functional information from multiple
experimental sources83 in response to the criticism that even
valid orthologs need not be functionally identical across
species; however, extrapolated interactions can still be
considered speculatory. Orthology mapping, specifically to
detect the conservation of entire protein complexes, requires
more sophisticated algorithms capable of incorporating
expression, localization, and other functional data in order
to more exactly determine conserved protein interactions.
Such algorithms do not exist yet to our knowledge but likely
will be developed within the next few years as such
supporting genomic data becomes available for an increasing
number of species. Until then, predictions generated through
orthology mapping are not preferred over validated experi-
mental data.

2.5.2. Sequence- and Structure-Based Associations

Interpretation of coding sequence to infer to domain
architecture is commonly used to determine the potential for
protein interactions.84 In the late 1990s a multiple-species
genomic sequence comparison method was developed to
predict physical interactions and other functional associations
between proteins.85 This method is based on the frequent
observation that two peptide chains existing in one species
are often encoded as disjoint domains in a single gene in
another species. For example, theE. coli GyrA and GyrB
gene products were initially thought to form a complex (a
prediction confirmed by experimentation in 200542) since
each of these factors has high similarity with a domain
encoded by a singly larger protein (topoisomerase II) in
yeast.85 Since the information gained from one organism
helps to predict an interaction between two proteins in
another species, this method is referred to as theRosetta
Stoneapproach, in analogy to the method used in deciphering
ancient languages. However, the limited generality of cross-
species relationships limits this approach’s utility for com-
prehensive projections.

On a more promising note, more precise elucidation of
protein interaction domains may increase the power of such
procedures. One recent study86 proposed that there are a finite
number of conceivable structural configurations of physical
interactions that may occur between two proteins of any
species. This value was estimated to be approximately 10 000
with the interaction domains of roughly 2000 already
defined.86 With the full exposition of the exact structures
and sequences of interaction domains it might be possible
to infer an interaction between any pair of proteins based
on amino-acid sequence identity alone. Accurate predictions
of the potential of proteins to interact can even be made based
on as little as 60% sequence similarity to known PPI binding
interfaces.87 In 2003, all possible pairwise permutations of
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yeast proteins were evaluated for plausible combinations of
well-established interdomain associations present in a dimer
database,88 resulting in over 7000 predicted PPIs, one-half
of which were supported by alternate evidence derived from
other methods. One advantage of this computational approach
is that it is intrinsically not biased against characterization
of low-abundance proteins,88 unlike affinity-based experi-
mental procedures.

Forecasting the composition of entire complexes represents
an increase in convolution over binary interaction prediction
and accordingly an increase in computation time, decreasing
its applicability to large-scale complex prediction. Also, as
was the shortcoming of orthology mapping, this method gives
no indication about whether a given interaction truly occurs
in vivo as potential interactors may be temporally or spatially
uncoupled. However, the recent overlay of structural protein
characteristics with known protein-interaction networks has
highlighted new evolutionary properties of highly associative
proteins and shown great potential in future interaction
network analysis.89 This area can be expected to expand
greatly in the coming years.

2.5.3. Text Mining

As individual researchers typically gather information for
proteins of interest through examining publications, text
mining remains among the most established methods of
gathering PPI data. However, since the number of publica-
tions available today is expanding explosively for virtually
every subspecialty of the biological sciences, comprehensive
text interpretation has become too demanding. To accom-
modate this data overload, computer programs have been
developed to systematically process and parse out interaction
data from large bodies of published literature in an automated
manner.

Algorithms that scan the literature for PPI have two
tasks: first, to recognize conclusively instances of mentioned
proteins (which is challenging because proteins often have
multiple names and abbreviations) and, second, to define the
biophysical context in which these proteins are being
discussed.90 Due to the complexity of the English language
and to the varied nature of protein interactions themselves,
defining context is no trivial task. More importantly, the
algorithm must be able to accurately distinguish a genuine
interaction from a coincidental occurrence, which may
present with nearly the same lexical syntax. Effective
algorithms must be trained to recognize appropriate English
sentence features (including verbal form, presence/absence
of a noun) and scored against manual curation to evaluate
performance before finally being used to parse large bodies
of literature.91 Recent computational approaches have inte-
grated information from sentences both preceding and
following the mention of protein/gene names to improve the
accuracy of the general approach92,93 (for a more in-depth
review, see Jensen et al.90 and Hirschman et al.94). Today
there are several publicly available software packages for
performing automated literature mining of protein interac-
tions (MEDSYNDIKATE95 and CONAN96).

Text mining can be an effective data collection method
for several reasons. First, the data collected is often from
multiple experimental sources, resulting in a collective set
of interactions less subject to any specific experimental bias.
Second, as the data retrieved by text mining algorithms is
vastly beyond what is published in any single (even high-
throughput) experiment, there is increased potential for cross-

validation. For example, there are over 80 000 yeast-specific
protein interactions in the last release of the GRID97 database.
If one filters and reduces this set to only the most accurate
1% of interactions (suitable evaluation methods are discussed
in more detail below), an even larger subset of putative
interactions is generated than obtained for either the Krogan
et al.13 or Gavin et al.12 published datasets. For these reasons,
text mining in combination with manual curation has been
used to populate public databases such as preBIND98 and
GRID,97 which are invaluable for computational biologists
as they tend to represent the largest sources of PPI data for
every species. The accuracy of interactions housed within
these databases significantly increases, however, when
literature retrieval algorithms are coupled with manual
curation,98 as experts can comb through and remove as many
spurious interactions as possible. Interaction networks created
from literature-mined protein interactions also exhibit topol-
ogy similar to networks generated by high-throughput
screening alone, although with better coverage99 (see the
Appendix for a brief discussion of graph theory and network
topology).

As for the study of mammalian protein interactions, a
potential disadvantage of text mining is the prevalence of
literature for commonly studied proteins, such as those
associated with cancer or other widely studied processes or
diseases. The increased representation skews the resulting
interaction map. Consequently, the accuracy of text mining
algorithms also improves as more experimental data (and
hence publications) is generated for a given organism.

3. Computational Approaches To Assessing
Putative PPI Networks

Yeast has developed into the gold-standard testing ground
for evaluating large-scale computational and experimental
approaches to interaction surveys. Benchmarking the methods
described above has indicated often-impressive efficacy
within a unicellular model setting but more importantly
exhibited a potential to be adapted to the more challenging
frontier of mammalian interaction assay. One of the most
striking lessons to be learned for large-scale interaction assays
is the importance of vigilant data management. While
experimental and computational high-throughput methods are
constantly increasing in accuracy and scope, the importance
of stringent data validation, especially when interpreting
protein interaction networks, remains paramount. Generating
experimental data is therefore only the first of several steps
in understanding a biological interaction network. Accord-
ingly, while the preceding sections have focused on creation
of the data pieces, the remainder of this review will be
focused on properly resolving these into an informative
puzzle.

One intriguing aspect of resolved interaction networks has
been the prevalence of cross-connections between various
protein modules as projected by certain high-throughput
screens in yeast,6,100which suggests a preponderance of cross-
talk among biological systems. Increasingly sophisticated
computational procedures are now adept at determining both
the core components and more transient members of the
functional modules that underlie protein interactions,12,14,100

ultimately aiming to comprehend the mesh-like structure of
the interactome. Yet while high-throughput experimental and
computational methods are poised to provide a major advance
for systems biologists seeking to understand how integration
of PPI networks occurs on a global scale, use of computa-
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tional algorithms to classify proteins into one or more finite
complexes based on sparse interaction data can pose a lack
of precision. Many researchers are interested in appraising
the properties of a relatively small number of constitutively
bound, functionally unified stable protein complexes. For this
reason, the decision of which computational methods are
subsequently used to evaluate experimental data depends as
much on an investigator’s own definition of the protein
complex as it does on the nature of the interactome itself.
Regardless of one’s stance, however, computational delinea-
tion of protein complexes tends to begin first with evaluation
of raw the input PPI, followed by derivation of intercon-
nected protein clusters, and last some form of evaluation of
clustering accuracy. Each of these steps is discussed in detail
below.

3.1. Evaluating Raw Protein −Protein Interaction
Data

Every method of interaction discovery or retrieval has an
associated false-positive and false-negative rate. Appropri-
ately, one of the most important steps in characterizing PPI
networks is determination of how extensively the network
may be over- or under-representative of a biological system
of particular interest. Removal of potentially spurious data
is a priority for large-scale assay, evidenced by the fact that
typically only the most confident 10-20% is published.12,13

Unfortunately, this can introduce a paradox: how does one
determine if putative new interactions are a true reflection
of reality and not simply the result of poor coverage when
there is scant validated information?

There are two general approaches to interaction data
validation. One can either rely on properties of the interaction
data alone or evaluate interactions based on secondary, and
potentially circumstantial, supporting evidence. If evaluating
networks based on data obtained from one sole experimental
source (i.e., large-scale Y2H or a TAP assay), the simplest
method of assigning confidence scores is often based on the
reported experimental properties. For example, interactions
generated through identifications of the subunits of purified
protein complexes using mass spectrometry are generally
given confidence scores based on certainty and reproduc-
ibility of the initial protein identifications. However, evaluat-
ing interactions based on broader network properties may
be more appropriate for studies that ultimately aim to
understand the network as a whole. In this way, interactions
can be scored or assigned a probability based on how well
they suit other functional attributes or the properties of known
interaction graphs. In 2006, Gavin et al.12 released a large-
scale list of protein complexes predictions for yeast based
on clustering of their experimentally recorded networks of
PPI data. Their scoring system, known as the socio-affinity-
index (SAI), was based on a “spoke” pairing model originally
proposed by Bader and Hogue.14 This model states that a
protein will bind to its fellow complex members like the
spokes of a wheel with a bait protein having direct binary
interactions with all prey proteins. In terms of application,
SAI assigns a score for pairs of putatively interacting proteins
based on the fraction of times they copurify. This method
controlled the total number of proteins retrieved for each
bait protein, penalizing promiscuous (i.e., most likely false-
positive) binding partners. SAI values were then translated
to binary interaction confidence scores based on comparison
with a set of gold-standard reference PPI obtained from the
MIPS database. Appropriate confidence score cut offs are

usually determined through receiver-operating-characteristic
(ROC) curve analysis (for a description of the ROC process,
see Hanley and McNeil101).

Evaluation based solely on experimentally generated
interactions (internal evaluation) is advantageous in that it
avoids biases introduced by potentially nonrepresentative
external data. However, any systematic bias introduced as a
result of the experimental technique will, in turn, be reflected
in the generated interaction network. In contrast, data
integration during interaction evaluation (herein referred to
as external evaluation) relies on publicly accepted knowledge
to evaluate experimental data. In this context, application of
machine learning can be useful. While a review of machine
learning is well beyond the scope of this text, the basic
concept is that an algorithm can be trained to assign
probabilities to new events based on its previous exposure
to well-accepted, similar events. For protein interaction data,
a machine-learning algorithm can be trained to recognize
patterns based on properties of well-known interactors (i.e.,
gold standards found in public curated databases as well as
other high confidence experimental results). The algorithm
is then used to examine the properties of novel interactors,
implicated by either experimental or computational means,
and in doing so determine the likelihood of that a given
interaction is spurious. For example, in a recent publication
Krogan et al.13 used a machine learning algorithm trained
on the experimental properties (reproducibility of raw PPI
scores, etc.) of well-accepted protein interactions detected
among a small number of experimentally validated gold-
standard protein complexes stored in the MIPS9 database and
then applied the same algorithm to assign confidence scores
for every novel interaction in the experimental dataset. After
determining an appropriate confidence score cutoff through
ROC-curve analysis, the authors obtained a high-confidence
dataset containing 7123 interactions among 2708 proteins
from their original set of over 70 000 interactions.

Although Krogan et al.13 used MIPS complexes to influ-
ence confidence score assignment, studies have demonstrated
that evaluation based on more speculatory evidence can be
effective as well. As mentioned briefly above (section 2.3),
interacting proteins are known to be enriched for certain
functional attributes as compared to noninteractors. Meta-
analyses of data generated for yeast indicates that interacting
proteins are far more likely to coexist in specific cellular
compartments,51 share patterns of transcriptional activation,3,4

and share other correlated properties.102 For this reason,
similar annotation in the Gene Ontology (GO) database,103

correlated expression patterns,3,4 or colocalization51 can be
used to influence evaluation of experimental data, and
combination of supplementary data of several types can
effectively be tied to machine learning to integrate multiple
interaction datasets.104-106

3.1.1. Low-Throughput Methods Commonly Applied in
Data Validation

Although characteristically only existing for small popula-
tions of proteins, interaction data generated through higher
resolution assays are typically very accurate and therefore
can be used as an independent benchmark for high-
throughput experimental datasets. For example, the MIPS
complexes that are commonly used in both interaction and
cluster benchmarking are often characterized using methods
discussed herein.

While generally applied to solving the structures of single
proteins, an increasing number of complexes including the
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very large proteasome107 and even the complete ribosome108

have been deduced using X-ray crystallography. Large-scale
application of X-ray crystallography to protein complex
analysis, however, is still limited due to the difficulty
associated with producing substantive amounts of highly
purified heteromeric proteins as well as complications in
crystallization.109

For those complexes that are not easily determined through
X-ray crystallography (such as membrane proteins which are
notoriously difficult to crystallize), single-particle cryo-
electron microscopy (cryo-EM) represents an attractive
alternative technique. Cryo-EM generates 3-dimensional
projections of complexes of interest by combining multiple
2-dimensional ‘slice’ images of the dried sample. This
represents a decrease in expense over X-ray crystallography
but also an increase in overall analysis time. Due to the nature
of the images obtained, any PPI predicted by cryo-EM must
be combined with either another experimental approach110

or rigorous low-throughput validation methods.111

Data from nuclear magnetic resonance (NMR) has also
been used to examine the structure and functional relation-
ships of proteins for nearly three decades112,113and impor-
tantly facilitate characterization of at least 14 protein
complexes in the last 3 years113 (for a review, see Bonvin et
al.113 and Mittermaier and Kay114). NMR methodology
detects spectral changes associated with conformational
rearrangement of backbone residues as a result of multipro-
tein binding.115 However, relatively high concentrations of
sample are needed, and data collection can take days to
weeks.

3.2. Clustering of Interaction Data
After obtaining interaction data (either experimentally or

computationally), the next challenge then becomes that of
assigning proteins into individual complexes. Computational
partitioning of interaction networks into highly connected
clusters has been used to impressive effect in large-scale
studies of yeast12,13,116and human.81,117

Although varied, clustering algorithms usually define
subgroups of proteins that exhibit higher similarity among
themselves than with other subgroups.118 In defining interac-
tion clusters, which are posited to represent protein com-
plexes, there are several algorithms that can be used, the
selection of which will depend on the nature of the desired
outcome. Some algorithms produce individual (exclusive)
clusters with nonshared members; others will allow shared
members between clusters. Nonexclusivity (i.e., clusters can
have shared members) can be viewed as being more
biologically accurate as many proteins show promiscuity in
terms of complex membership. However complexes with
nonshared members ease postanalysis of results and facilitate
functional categorizations. Additionally, some algorithms are
capable of incorporating biological or functional data.

The lack of overlap48 in corresponding yeast protein
interactions reported by Krogan et al.13 and Gavin et al.12

points to the importance of selecting a standardized com-
putational assessment procedure. Recent follow-up studies119

(also Pu, S.; Wodak, S. Personal communication) demon-
strate that application of a unified clustering method results
in similar clusters for both datasets. Moreover, an additional
caveat is that while disparate algorithms can decipher
alternate interconnected groups of proteins, the results serve
only as an approximation of the actual physical complexes
present within the cell. Many of the algorithms described

operate based on properties of graph theory; for a brief
description of graph theory in biology, see the Appendix.

3.2.1. Clustering Algorithms

k-means is recognized as being one of the simplest
clustering algorithms in application today. For a set ofX
clusters, X centroid values will be determined equally
covering the range of the inputted set. Data points are then
individually assigned to the centroid that they are closest in
value to. Unfortunately, in order to usek-means clustering,
the number of clusters must be anticipated in advance. This
represents a major disadvantage when studying novel inter-
actomes as the number of complexes present is impossible
to predetermine.

Commonly depicted using a dendrogram, hierarchical
clustering is famously used in biology to classify species
based on phenotypic or phylogenetic properties. More
recently, hierarchical clustering has been applied to PPI data,
finding proteins with highly similar expression patterns.120

There are several variations of hierarchical clustering;
however, all those commonly applied in interaction cluster
analysis consist of the same steps. Each node in the set being
analyzed begins the process as its own cluster. From there,
similarity between any two nodes in terms of properties such
as minimal path length121 is computed using one of many
different measures (i.e., Spearman’s rank). The two nodes
that are the most similar are moved into the same cluster,
and distances to all other nodes are recomputed. This is
continued until the entire tree structure has been established.
Examining proteins grouped together at one level of the
hierarchy allows one to draw finite protein clusters.

In a purely computational study Krause et al.122 applied
three variations of hierarchical clustering to a yeast affinity-
purification dataset, ultimately concluding that more interac-
tion data is required for an accurate complexosome descrip-
tion. Several years later Gavin et al.12 built on Krause’s
results and used a similar approach to draw their PPI clusters
based on experimental data in the yeast proteome. This
nonexclusive method also integrated functional data when
deriving clusters and was able to group proteins into either
stable protein ‘modules’ comprising the functional core of
unified protein complexes or extended promiscuous asso-
ciators, designations the established authors felt to be truly
indicative of the state of the complexosome.

One method that is gaining increased attention for PPI
clustering is the Markov clustering algorithm (MCL).123 Once
a network graph of proteins has been generated (Figure 3)
random ‘walks’ are created in silico (wherein nodes are
picked at random and a predetermined number of PPI
“edges” is traversed). Through an iterative process of many
such walks the algorithm splits the proteins into exclusive
groups based on the relative flow across highly traversed
regions (high connectivity indicates clusters). In a recent
comparison of biologically applied clustering algorithms124

MCL was shown to be remarkably resilient to spurious graph
perturbations. Appropriately, MCL was used to describe
many novel protein complexes within the yeast proteome
based on large-scale TAP experimental data.13

Another algorithm, known as MCODE,125 used for detect-
ing protein complexes among PPI networks similarly divides
interaction data into clusters based on regions of high
connectivity. This algorithm is freely available as a plug-in
for the Cytoscape126 software package, which allows for
ready viewing of the agglomerative results (Figure 3).
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3.2.2. Evaluation of Predicted Protein Clusters

Determining the accuracy of computationally derived
protein complexes is more challenging than establishing the
accuracy of the corresponding binary interactions. This is
partly due to the fact that there are varying definitions of
the protein complex itself, while protein interactions are more
clearly defined. Also, it is feasible to establish negative gold
standards for protein interactions, suggesting which proteins
might not interact,55 while it is generally far more difficult
to say with certainty which proteins do not exist in the same
complex. If there were a well-established set of reference
protein complexes, assessing the accuracy of members would
be a more realistic issue. Yet such gold-standard complexes
are infrequent, especially for mammalian systems. Last,
whereas binary protein interactions have been studied on a
large scale for almost a decade, high-throughput protein
complex determination studies only began a few years ago.
Therefore, the resulting state of knowledge of protein
complexes is less than comprehensive.

As mentioned briefly above, the MIPS9 database currently
contains 68 stable complexes (217 subcategorized com-
plexes) characterized in yeast consisting of 1297 nonexclu-
sive subunits and is widely regarded as being the most
comprehensive list of protein complexes available. This
reference set was used in the machine-learning algorithm of
Krogan et al.13 to assign confidence scores to novel protein
interactions and complexes. Gavin et al.12 likewise compared
their computationally derived complexes with reference to
the MIPS dataset to determine clustering accuracy and found
their experimental dataset to have 73% coverage. However,
even the highly curated MIPS database is suspected to be
biased and contain errors,55 and it is debatable if experimental
divergence from MIPS data is a sign of decreased accuracy
or gain of knowledge.

Aside from comparisons to known complexes, another
approach in protein complex validation is to examine
overlapping functional characterization using protein/gene
annotations in databases such as GO,103 OMIM,127 or
KEGG128 or examine similarity of the patterns of gene
expression. This stems from the logic that interacting proteins
are by definition functionally linked and the experimental
observation that proteins of similar function show similar
expression patterns.129-131 However, recent evidence has
shown that the pathways and functional modules of cells may
be subject to much more cross-talk and intermember
promiscuity than previously thought,6,132 and therefore,
functional- and expression-based interpretations can lead to
oversimplification.

Ultimately, clusters are perhaps best modeled after a
biologist’s own sense of what constitutes a functional
module. Some authors prefer to use gold standards as an
objective measure, which they believe to represent protein
complexes and hence score PPI data accordingly. As
previously mentioned, a common framework for firmly
establishing the nature of protein modules would serve to
unify the community and potentially increase the body of
known complexes; however, as of yet no such initiatives
exist.

4. Human Complexosome: A Case Study

With the broad array of both experimental and computa-
tional methods as well as the lack of consensus in defining
the nature of the protein complex, definitive protocols for
large-scale complex detection can be difficult to establish.
For this reason a working example of how protein complexes
might be elucidated in a human setting can help to illustrate
the issues and caveats at hand.

Figure 3. Visualization of a protein interaction network. The Cytoscape software package was used to display the first 10 000 interactions
in the human cancer protein interaction map. Display was created using Cytoscape’s organic layout option. The large cluster in the middle
of the figure represents the largest connected subgroup of the interaction network, while connections below and to the above right of the
graph represent other nonconnected units. (Inset) Representation of one cluster obtained using the MCODE algorithm. Cluster members are
highlighted.
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Earlier this year the task was laid upon our lab to draft a
preliminary map of protein complexes in human. As experi-
mental methods for mammalian complexosome study are still
being evaluated and computational studies require far less
of an investment both of time and money, the logical
approach is to attempt to generate this list computationally.
The only de novo computational method for detecting
interactions is through interolog mapping, which, for reasons
mentioned above, is not preferable to actual experimental
data. As low-throughput studies have been undertaken in
human cells for decades, literature mining of interactions
should generate both a larger and a more accurate list of
protein interactions in human than orthology mapping. While
several literature-mining software packages may be appropri-
ate to apply here, public databases have already begun
manually curating human interaction data (more below). The
resulting interactions have higher fidelity than whatever a
lone research group may retrieve. If the focus of study had
been an organism of less interest, predefined algorithms
would have been applied.

The Human Protein Reference Database (HPRD)133 con-
tains over 36 000 freely available, literature-mined, curated
protein interactions in human, making it the largest public
repository of human interaction data.134 Importantly though,
each interaction is listed along with a publication number
referencing both the paper and method used to detect the
interaction. This information can be used to re-examine the
original published experimental results and assign confidence
scores based on experimental techniques. A small collection
of interactions chosen randomly (say 5% of the data) can be
manually checked against the listed publication to determine
if the literature-mining algorithm obtained a true interaction.
By evaluating how often the algorithm reported the interac-
tion properly, a rough indication of the accuracy of the
literature-mining process is obtained.

If the dataset is found to be of sufficient quality, the next
step in obtaining human protein clusters is to assign
confidence scores to these 36 000 interactions. Since both
internal and external evaluation methods have their merit, a
good approach would be to apply both to interaction scoring.
By internal evaluation methods we refer to those computer
algorithms that can assign confidence scores by examining
the topology and structure properties of the interaction
networks. Examples of these methods are the social associa-
tion index (SAI) as used by Gavin et al.12 (mentioned in
section 3.1). External methods include those algorithms that
utilize properties of individual proteins or genes to infer or
validate pairwise interactions. For example, the presence of
protein domains and phenotypic characterization of a small
gold-standard subset of protein interactions (for example,
those experimentally determined through NMR or cocrys-
tallization) could be used to train a machine-learning
algorithm to deduce the confidence scores in the remaining
interactions. Final confidence scores can then be an amalgam
of those obtained from internal and external evaluation
methods and an appropriate score cutoff determined through
ROC analysis.

Once the interactions are scored, the next step is algorith-
mic clustering followed by independent evaluation of the
putative protein clusters. MCL is an attractive algorithm in
this context since it is capable of automatically incorporating
the previously determined confidence scores as edge weights
during the process of assigning cluster membership. As there
is currently no widely accepted gold-standard set of human

protein complexes, evaluation of the accuracy of the cluster-
ing exercise would depend on the properties of protein
clusters determined in other organisms. For example, clusters
can be examined for coexpression and colocalization among
the predicted subunits to obtain some estimate of the expected
biological enrichment. The most preferable means of valida-
tion, however, would be some form of in vivo experimental
testing of a small subset of randomly selected protein clusters,
preferably using a reliable biophysical method such as TAP
or Y2H.

The process described above is obviously an oversimpli-
fication of a definitive pipeline of defining the multitude of
human complexes but illustrates a successful integration of
key methods discussed in this review.

5. Conclusions and Perspectives
While there exists no single method best suited to

characterize protein complexes in vivo, modern proteomic
procedures and modeling algorithms are steadily increasing
in accuracy as is the amount of publicly available interaction
data collected for important organisms. Over the next 5 years
the landscape of high-throughput interaction surveying can
be expected to change dramatically (just as it has quickly
expanded from 5 years ago) due to the substantive improve-
ment in both existing and innovative new experimental and
computational techniques. However, as high-throughput
interaction screening inevitably moves away from simpler
model systems, such as yeast, and inexorably toward
mammalian organisms, a new battery of challenges will be
encountered. Among these are the increased magnitude and
dynamic nature of protein interactions and complexes in the
multicellular milieu, more complex patterns of regulation,
more extensive post-translation modifications of complex
subunits in various tissues and cell types, and more com-
plicated stress and environmental control mechanisms. A
resulting computational difficulty to overcome will be
delineating complex membership among the far more
numerous set of protein interactions.

Systematic functional assessment of human gene products
steadily increases135,136 since completion of sequencing of
the genome.137,138Over the past several years the total number
of estimated functional genes in the genome has decreased
to the currently accepted number of 21-23,000, which are
seemingly within reach for a battery of powerful new survey
technologies. Yet at the same time the magnitude of
interactions per protein has progressively increased, sug-
gesting that the increased complexity of higher organisms
does not lie in the genetic code per se but rather in the
physical and functional associations of proteins. Additional
confounders, such as alternative splicing, will likewise cause
a consequent increased reliance on computational methods
for benchmarking until newly specialized experimental
techniques appear for mammalian systems. Accordingly,
breakthroughs in techniques capable of describing the
labyrinth-like landscape of the human interactome are eagerly
anticipated.

6. Glossary
centroid geometrically, the centroid is the point of inter-

section of hypergeometric planes of an object
(i.e., the exact center of a triangle)

complexosome coined from similarity to proteome and interac-
tome, the complexosome describes all protein
complexes existing within a cell
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cytoscape software package specialized for interaction net-
work analysis maintained by a public effort
(http://www.cytoscape.org)

dendrogram tree-style diagram used to depict elements grouped
together by a clustering algorithm

edge literally, the lines connecting members of a
network graph. In the context of protein
association diagrams, edges correspond to
physical interactions between proteins

gold standard in the context of protein complexes, the most
trustworthy set of complexes from which to
benchmark experimental and computational
approaches

gene ontology
(GO)
database

hierarchically structured repository of gene char-
acterizations for multiple organisms. The three
main categories of characterization are local-
ization, biological process, and molecular
function (http://www.geneontology.org)

interaction
domain

the term ‘interaction domain’ has several inter-
pretations within computational biology. As it
was applied in this manuscript, it corresponds
to a given section of the genomic or amino-
acid sequence encoding a secondary structure
known to interact with other similarly de-
scribed secondary structures

interactome all protein interactions within a cell
interolog protein interaction conserved across species
minimal path

length
shortest number of edges required to connect two

nodes on a network graph
node members of network graphs; in this case, proteins
ortholog genes in two species are considered orthologous

if they were both inherited from a common
precursor gene in an ancestral species

proteome entire protein complement of a cell
topology while topology can be used to describe a specific

branch of geometry, in this context it refers to
the structure of connections in a network
graph, be they scale free or random in nature

transforming
growth factor
beta (TGF-â)

the TGF-â superfamiliy of proteins has been
implicated in such processes as cell growth,
division, and differentiation. Since the TGF-â
pathway has a distinct effect on programmed
cell death (apoptosis), it has been studied
extensively in the development of cancer.
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8. Appendix

8.1. Introduction to Graph Theory
Graphs with proteins or genes depicted as nodes and

interactions as the edges between them are frequently used
to represent both protein and genetic interaction networks.
Using graphs of this type to depict interaction networks
allows analysis by a certain set of mathematical formulas,
those pertaining to graph theory.

Many naturally occurring graphs exhibit a topology in
which the majority of constituent nodes have only a few
associations and just a few nodes have many associations
(i.e., the number of associations per protein follows a power-
law distribution, with corresponding graphs referred to as
being scale-free). Scale-free graphs exhibit ‘small-world’
characteristics as most nodes can be linked to one another
by following a short path. Models of this type are generally

noted in real-world networks; in fact, the so-called ‘small-
world’ problem139 was originally described when Stanley
Milgram noticed shorter than expected path lengths among
social networks (later the basis for the famous ‘six degrees
of separation’ hypothesis). It is tempting to believe that scale-
free topology exists in biological networks as it would offer
greater protection against random deletions than other types
of associative graph structures.

Whether the PPI network truly follows a scale-free pattern
remains controversial with compelling evidence presented
both supporting140,141and negating142,143the claim. Regard-
less, proteins with higher connectivity in the network (often
called ‘hubs’) tend to be more essential to cell function.140,144

Similarly, graph properties such as betweenness and close-
ness (literally measuring the relative proximities of two nodes
on a network graph) are often used to describe how
functionally related two proteins or genes are.145,146 There
are several freely available software packages used in the
analysis of PPI networks, the most common of which are
Pajek123 and Cytoscape126 with Cytoscape having many
useful plug-ins for biological analysis.
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